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ABSTRACT Advances in sequencing technology provide special opportunities for genotyping individuals
with speed and thrift, but the lack of software to automate the calling of tens of thousands of genotypes
over hundreds of individuals has hindered progress. Stacks is a software system that uses short-read
sequence data to identify and genotype loci in a set of individuals either de novo or by comparison to
a reference genome. From reduced representation Illumina sequence data, such as RAD-tags, Stacks can
recover thousands of single nucleotide polymorphism (SNP) markers useful for the genetic analysis of
crosses or populations. Stacks can generate markers for ultra-dense genetic linkage maps, facilitate the
examination of population phylogeography, and help in reference genome assembly. We report here the
algorithms implemented in Stacks and demonstrate their efficacy by constructing loci from simulated RAD-
tags taken from the stickleback reference genome and by recapitulating and improving a genetic map of
the zebrafish, Danio rerio.
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DNA sequencing costs are dropping exponentially (Snyder et al.
2010). In addition, short-read sequencing technologies, such as the
Illumina HiSeq 2000 that can sequence 100 gigabases of DNA in
a few days (http://www.illumina.com/systems/hiseq_2000.ilmn), are
expanding experimental space, from fosmids (tens of kilobases), to
bacterial artificial chromosomes (hundreds of kilobases), to entire
genomes of bacteria (megabases), vertebrates (gigabases), and plants
(tens of gigabases). Recent work genotyping 100 stickleback fish at
45,000 loci (Hohenlohe et al. 2010) reveals the potential to address
questions in population genomics that have not previously been
tractable even in model organisms.

Coupling restriction enzyme-based genetic markers, such as RAD-
tags (Miller et al. 2007), with the Illumina platform (called RAD-seq,
Baird et al. 2008) allows the rapid and inexpensive construction of
genetic linkage maps containing thousands of genetic markers (e.g.,
8406 in gar, Amores et al. 2011), more than appear on the maps of

any but a few intensely investigated species such as mouse (10,000
markers, www.informatics.jax.org/genes.shtml) and economically
valuable species such as cow (7063 markers, Arias et al. 2009), potato
(10,000 markers, van Os et al. 2006), and oilseed rape (13,551
markers, Sun et al. 2007). Because RAD-seq identifies an enormous
number of polymorphisms, single individuals taken directly from the
wild possess sufficient genetic diversity to generate high-density, high-
quality genetic maps (Amores et al. 2011), thus providing genomic
information for little-studied species. Exploiting population genomic
or genetic mapping datasets with tens of millions of raw reads and
millions of genotype calls requires a robust, efficient, and easily use-
able set of software tools that, unfortunately, have not previously been
available.

To solve this problem, we developed Stacks, software that identifies
loci, either de novo or from a reference genome, and calls genotypes
using a maximum likelihood statistical model. Stacks, named because
the restriction enzyme site that anchors each short sequence causes
reads at a locus to pile up, is effective for genomic applications ranging
from linkage mapping to population genomic and phylogeographic
studies.

Here, we report the algorithms implemented in Stacks, demon-
strate their efficacy through simulation, and test their ability to recon-
struct de novo a zebrafish genetic map using RAD-tag mapping from
the doubled haploid mapping panel (Kelly et al. 2000; Postlethwait
et al. 1994; Shimoda et al. 1999; Woods et al. 2000; Woods et al.
2005). Our results verify the efficacy and efficiency of Stacks for
inferring genetic loci and automated calling of genotypes.
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MATERIALS AND METHODS
Stacks is implemented by component programs written in C++ and
Perl, with the core algorithms parallelized using OpenMP libraries.
Table 1 lists Stacks components along with a brief description of each.
The Stacks web interface is implemented in PHP and, along with
several component programs, stores and retrieves data from a MySQL
database. The web interface interacts with the database using the
MDB2 Pear module. Stacks is available as open source software under
the GPL license and can be downloaded from http://creskolab.uoregon.
edu/stacks/.

Simulating RAD-tags to test performance
The Stacks core component program is ustacks, which identifies
unique loci de novo. To test ustacks, we created simulated datasets
from the stickleback reference genome (BROAD S1, Ensembl ver-
sion 59) by extracting 45,547 reads each 60 bp long in both direc-
tions at each SbfI restriction enzyme cut site (CCTGCAvGG)
(Figure S1A). We re-diplodized the genome in silico by creating
alleles (Figure S1B) into which we uniformly introduced single nu-
cleotide polymorphisms (SNP) at a rate of 0.5%. We “sequenced”
each allele to a depth determined by a draw from a Poisson distri-
bution at three different mean sequencing depths (10·, 20·, and
40·) (Figure S1C). For each “sequenced” read, we simulated se-
quencing errors at a rate that increased linearly along the sequence
to mimic Illumina reads (Figure S1D). We investigated three mean
error rates (0.5%, 1%, and 3%) to cover normal to high error rates.
Each simulation run involved 10 replicates. For each dataset, ustacks
was executed setting the within-individual distance parameter to
two nucleotides and the stack-depth parameter to three identical
reads.

Constructing a dense zebrafish map
DNAs from the gynogenetic doubled haploid zebrafish HS mapping
panel (Kelly et al. 2000; Woods et al. 2005) were prepared for RAD-
tags according to Amores et al. (2011) and Etter et al. (2011). Progeny
were sequenced with 60 bp reads in three Illumina GAII lanes, result-
ing in 70,921,725 raw reads, of which 57,451,403 were retained after
cleaning. Because DNA of the original female parent was no longer
available, we combined all reads from her gynogenetic progeny to
create a synthetic maternal genome and processed the content
through Stacks. We executed the Stacks pipeline with a stack-depth
parameter of three and a within-individual distance parameter of two
and constructed a linkage map using JoinMap (Van Ooijen 2006).
While Stacks has no limit to the number of markers it can handle,
JoinMap is limited to about 8000 markers. To work around this de-
ficiency in JoinMap, we subdivided Stacks output into overlapping
datasets small enough for JoinMap to handle and then ran JoinMap
to construct linkage groups, using markers shared in overlapping
datasets to identify corresponding linkage groups. Linkage group–
specific datasets with fewer than 8000 markers each were finally
loaded into JoinMap to identify locus order.

Besides comparing the RAD-tag map to a previously published
meiotic map, we also aligned RAD-tag markers to the physical
genome (Zv9, Ensembl version 61) by BLASTn. These searches used
an e-value cutoff of 1 · 10217 (to allow for sequencing errors and for
polymorphisms between the reference genome and the HS panel) and
required a unique best hit to the reference genome or a top hit with
a raw BLAST score at least an order of magnitude greater than the
second best hit with 70% of the query sequence aligned. Genotypes for
markers present in at least 36 of the 42 HS map cross individuals were
exported into JoinMap 4.0 (Van Ooijen 2006). Linkage between

n Table 1 Stacks component programs

Program Description Inputs
Database
interaction

process_radtags.pl Cleans raw Illumina reads, outputs FASTA/FASTQ files. Raw Illumina reads No
ustacks (unique stacks) Builds loci de novo and detects haplotypes in one

individual.
Cleaned FASTA/FASTQ files No

cstacks (catalog stacks) Merges loci from multiple individuals to form a catalog. ustacks, tab-separated files No
sstacks (search stacks) Matches loci from an individual against a catalog. ustacks and cstacks, tab-separated files No
markers.pl Calls mappable markers from parental loci. None Yes
index_radtags.pl Indexes the database for use by the web interface. None Yes
denovo_map.pl Executes ustacks on each individual, builds a catalog

with cstacks, and matches individuals against the
catalog with sstacks. Calls markers with markers.pl
and indexes the database with index_radtags.pl.

Cleaned FASTA/FASTQ files Yes

genotypes.pl Calls genotypes in a map cross population and outputs
markers for use by JoinMap or r/QTL.

None Yes

pstacks (population
stacks)

Takes cleaned reads aligned to a reference genome,
builds stacks based on the genomic locations of the
reads, and detects haplotypes in one individual.

Bowtie or SAM sequence alignments No

ref_map.pl Executes pstacks on each individual, builds a catalog
with cstacks, and matches individuals against the
catalog with sstacks. Calls markers with markers.pl
and indexes the database with index_radtags.pl.

Cleaned FASTA/FASTQ files Yes

sort_read_pairs.pl Given a set of Stacks data and a set of cleaned,
paired-end Illumina reads, outputs one FASTA file
for each stack consisting of the paired-end reads
associated with reads in that stack.

ustacks output files, cleaned
FASTA/FASTQ files

No

load_sequences.pl Loads a set of loci-associated sequences (e.g.,
RNA-seq ESTs) into the database.

FASTA file containing sequences Yes

export_catalog.pl Exports sequences from the database, including loci
and loci-related sequences.

None Yes
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markers, recombination rate, and map distances were calculated using
the Kosambi mapping function and the maximum likelihood function
in JoinMap. Markers were grouped at an initial logarithm of the odds
(LOD) threshold of 7.0, and small linkage groups were incorporated
using the strong cross-link feature of JoinMap at a minimum LOD of
5.0. Markers with strong segregation distortion or that appeared un-
linked at LOD , 5.0 were excluded.

RESULTS
We designed Stacks as a modular pipeline to efficiently curate and
assemble large numbers of short-read sequences from multiple sam-
ples. Stacks identifies loci in a set of individuals, either de novo or
aligned to a reference genome, and then genotypes each locus. Stacks
incorporates a maximum likelihood statistical model to identify se-
quence polymorphisms and distinguish them from sequencing errors.
Stacks employs a Catalog to record all loci identified in a population
and matches individuals to that Catalog to determine which haplotype
alleles are present at every locus in each individual. Stacks stores
results in a MySQL database and displays them through a web in-
terface that facilitates marker annotation. The database also allows
linking markers to other sequence information, such as RNA-seq data
(Mortazavi et al. 2008). Stacks can export data as genotypes for
JoinMap (Van Ooijen 2006) or R/qtl (Broman et al. 2003) or as a
set of observed haplotypes for a general population.

Because Stacks was originally designed to build meiotic maps
(Amores et al. 2011), some pipeline terminology pertains to genetic
mapping, but Stacks can be used for nearly any analysis using genomi-
cally localized short-read sequences. We describe here how the pipe-
line functions to build a genetic map de novo, and then how it can use
a reference genome. Finally, we describe the testing of Stacks by sim-

ulation and by reconstructing a zebrafish genetic map. The Stacks
component programs are discussed below and described in Table 1.

Building markers for a genetic map de novo

Overview: The discussion here assumes that input to Stacks is com-
posed of RAD-seq data (Figure 1A) from the parents and progeny of
a genetic cross. Stacks builds map markers by identifying loci and their
constituent alleles in each individual (Figure 1A–F) and by creating
a Catalog of parental loci (Figure 1G). Stacks then matches progeny
against the Catalog (Figure 1H), which defines alleles at each locus in
each individual. At each stage, Stacks exports outputs into a MySQL
database.

Stacks requires clean sequence data in FASTA or FASTQ output
files (e.g., Kelley et al. 2010) using the program process_radtags.pl.
The process_radtags.pl program examines each read using a sliding
window: if the average quality score within a window drops below
90% confidence [a Phred score of 10, Ewing and Green (1998)], Stacks
discards the read. Thus, Stacks accepts reads with isolated errors but
detects reads with prolonged drops in quality and discards them.
Uncalled nucleotides, nonexistent barcodes, or deficient restriction
enzyme cut sites can also cause Stacks to exclude reads. Stacks can
correct isolated errors in the restriction cut site sequence or in the
barcode if the barcode is two or more nucleotides distant in sequence
space from other barcodes used in the same sequencing library.

Identifying stacks, inferring loci: The ustacks (unique stacks)
program reads cleaned sequences and distills data into unique, exactly
matching stacks by loading reads into a hash table (Figure 1A).
Unique stacks that contain fewer reads than a configurable threshold

Figure 1 Stacks schematic. (A)
The ustacks program forms
stacks in an individual from short
sequencing reads (cleaned by
process_radtags.pl) that match
exactly. (B) The ustacks pro-
gram breaks down the se-
quence of each stack into
k-mers and loads them into
a dictionary. The ustacks pro-
gram breaks down each stack
again into k-mers and queries
the k-mer Dictionary to create
a list of potentially matching
stacks, which can be visualized
as nodes in a graph connected
by the nucleotide distance be-
tween them. (C) ustacks merges
matched stacks to form putative
loci. (D) ustacks matches sec-
ondary reads that were not ini-
tially placed in a stack against
putative loci to increase stack
depth. An SNP model in ustacks
checks each locus at each
nucleotide position for poly-
morphisms. (E) ustacks calls
a consensus sequence and
records SNP and haplotype
data. (F) The cstacks program

loads stacks from the parents of a genetic cross into a Catalog to create a set of all possible loci in a mapping cross. (G) sstacks matches map
cross progeny against the Catalog to determine the haplotypes at each locus in every individual in the cross.
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(the stack-depth parameter) are disassembled, and the reads are set
aside because these stacks are indistinguishable from stacks generated
with sequencing error. Reads in a stack are primary reads, and reads
that are set aside are secondary reads. The ustacks program calculates
the average depth of coverage, then identifies stacks that are two
standard deviations above the mean and excludes them, along with
all stacks that are one nucleotide apart from these extremely deep
(lumberjack) stacks, which usually represent repetitive elements.

Polymorphic genetic loci produce stacks that differ in few
nucleotides. A k-mer search algorithm defines loci based on a user-
specified distance between stacks (the within-individual distance pa-
rameter). This configurable distance depends on the dataset’s genetic
properties, such as polymorphism rate and read length, and usually
allows just a few nucleotide differences. To implement this compari-
son, ustacks breaks the sequence of each stack into a set of overlapping
fragments of equal length k (k-mers) (Edgar 2004; Vinga and Almeida
2003) (Figure 1B). The first k-mer spans nucleotides 1 to k, the second
2 to k + 1, the third 3 to k + 2, and so on. The ustacks program
automatically maximizes k-mer length according to the allowed
nucleotide difference (longer k-mer lengths produce less promiscuous
k-mers that require fewer comparisons to other reads) and loads
k-mers into the Dictionary (Figure 1B).

The ustacks program queries the k-mer Dictionary with each
k-mer from each stack to identify other stacks with matching k-mers.
For pairs of stacks with sufficient numbers of matching k-mers,
ustacks aligns the pair, naively matching nucleotide by nucleotide to
verify that each pair of stacks is within the allowable nucleotide
distance, and if they are, it records a match.

The k-mer search algorithm transitively relates pairs of stacks. For
example, if stacks 4 and 5 match and stacks 5 and 6 match with an
allowable distance of one nucleotide, ustacks records two matching
pairs (Figure 1C). Then ustacks merges all matching pairs, in this case
merging 4, 5, and 6, even though 4 and 6 are two nucleotides apart.
Merged stacks represent putative loci displayed as a graph with nodes
representing unique stacks and edges weighted by the nucleotide dis-
tance between them (Figure 1C). In a full graph containing all stacks
in the dataset, each putative locus represents a disconnected subgraph
(Figure 1C).

In a diploid genetic cross, homozygous and heterozygous loci
should contain one and two stacks, respectively. Allowing for some
error, if more than three unique stacks have been merged, or if the
coverage of the merged stack is more than two standard deviations
above the mean coverage, ustacks shunts the stack to the deleveraging
algorithm to determine which subset of these large stacks is most
likely to represent a locus (see Appendix 1).

The process of merging stacks is iterative. With a user-specified
distance of three nucleotides between stacks, ustacks first finds stacks

that are a single nucleotide different and merges them, then continues
at a distance of two, and finally at a distance of three. At the end
of each round, ustacks excludes lumberjack stacks. Secondary reads
(2� reads, Figure 1E) that were set aside earlier are now matched
against putative loci using the k-mer search algorithm but with greater
nucleotide distance (two nucleotides larger than the within-individual
distance parameter by default). Secondary reads that do not have a best
match to a unique defined locus are discarded. At the end of this stage,
Stacks has constructed a set of putative loci from high-confidence
unique stacks and has buttressed locus depth by adding second-
ary reads.

Inferring alleles and haplotypes: The next step is to identify
polymorphisms within loci. To detect polymorphisms and infer alleles
(Figure 1E), ustacks examines each putative locus one nucleotide po-
sition at a time using a maximum likelihood framework (Hohenlohe
et al. 2010) (see Appendix 1). Some loci have polymorphisms at more
than one position, but rarely in a short-read locus would a recombi-
nation event occur between two polymorphisms; hence, the configu-
ration of SNPs at a locus represents a haplotype.

SNPs and haplotypes are visualized as a two-dimensional matrix
containing stacked sequencing reads (Figure 1E). Stacks identifies
SNPs by examining the matrix column-wise and calls haplotypes by
examining the matrix row-wise. Haplotypes that define alleles in each
locus become genetic markers for subsequent analyses. Finally, Stacks
determines a consensus sequence for each locus (Figure 1F).

Aggregating loci into a Catalog: At this point, Stacks has constructed
loci for one individual (the large top box, Figure 1A–F). After Stacks
has accomplished this task for a number of individuals (e.g., the two
parents in a genetic cross), cstacks (Catalog stacks, Figure 1G) syn-
thesizes a Catalog of loci that appear in members of the population.

The cstacks program reads the output from ustacks and merges
loci into the Catalog. The first individual (say, the female parent of the
cross) initializes the Catalog. Each additional individual is then
merged into the Catalog in turn. Individual loci are matched to those
already in the Catalog using the same k-mer search algorithm used by
ustacks, except that each locus is represented in the k-mer dictionary
by the set of k-mers resulting from each haplotype at that locus. When
two loci match, cstacks merges their SNPs in the Catalog. If, however,
those SNPs have conflicting alleles (for example, a fixed A in the
Catalog and a segregating G/C in the locus that is being merged in),
the merge fails and cstacks issues a warning. The cstacks program
adjusts its haplotype calls based on the newly merged SNPs.

The between-individual distance parameter of cstacks allows for
mismatches while merging loci into the Catalog. If each parent is fixed
for a different allele at a particular locus, cstacks can detect the

n Table 2 Stacks marker types

Marker type Female Male
Number of

segregating alleles Notes

ab/aa Heterozygous Homozygous 2
aa/ab Homozygous Heterozygous 2
ab/ab Heterozygous Heterozygous 2
aa/bb Homozygous Homozygous 2 Detected by cstacks
ab/– Heterozygous Absent 2 Polymorphic RAD-site in male, restriction site mutated in female
–/ab Absent Heterozygous 2 Polymorphic RAD-site in female, restriction site mutated in male
ab/cc Heterozygous Homozygous 3 ab detected by ustacks, cc detected by cstacks
cc/ab Homozygous Heterozygous 3 ab detected by ustacks, cc detected by cstacks
ab/ac Heterozygous Heterozygous 3
ab/cd Heterozygous Heterozygous 4
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mismatch and properly merge the loci. This property is particularly
useful when fixed differences occur, as in crosses between inbred
populations or between divergent species.

Matching the population against the Catalog: To identify which
locus/haplotype combinations are present in each individual in the
population, sstacks (search stacks) matches every individual in the
cross, including the parents and the progeny, against the Catalog
(Figure 1H). The sstacks program constructs a hash table from every
haplotype in the Catalog, compares all haplotypes from an individual,
and records matches. Loci that match more than one Catalog locus are
excluded because their true matching locus in the Catalog is ambig-
uous; multiple loci, however, can still uniquely match the same Cat-
alog tag (these could represent, for example, repetitive sequences in
the progeny that are not in the parents); users can elect to exclude
these in later analyses.

Calling mappable markers: At this stage, Stacks has identified hap-
lotypes segregating in each individual in the population. Next Stacks
identifies informative markers. The markers.pl program identifies
mappable markers in the parents by downloading Catalog matches
from the MySQL database and tallying up all the matching parental
haplotypes. The markers.pl program characterizes parental loci into
10 classes of mappable markers, including loci that are segregating in
the family due to variation in a single parent (ab/–, two alleles, a and
b, in one parent, and a missing restriction site in the second parent),
loci homozygous within parents but heterozygous between parents
(aa/bb), loci with two (ab/aa), three (ab/ac), or four (ab/cd) haplo-
types, as well as other related types (Table 2).

Stacks has now processed enough data to genotype map cross
progeny, but it first must build an index in the MySQL database to
unify the outputs of the previous analyses. The index_radtags.pl pro-
gram performs this task and provides results to the web interface. This

Figure 2 Stacks web interface. (A) The interface allows a researcher to view observed haplotypes at each locus in all individuals. (B) Researchers
can click each haplotype to view the stack itself. The interface provides extensive filtering facilities as well as the ability to annotate and export
results in a number of formats, including Excel, JoinMap, and R/qtl.
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business logic is implemented in the denovo_map.pl program, which
executes ustacks, cstacks, sstacks, markers.pl, and index_radtags.pl,
and then uploads data to the database.

At this point, Stacks calls genotypes from map cross progeny using
genotypes.pl after specifying a particular map type (F1, F2, doubled
haploid, or back cross) and an export type (JoinMap or R/qtl). The
genotypes.pl program maps haplotypes in the progeny to the marker
types detected in the parents. First, genotypes.pl downloads from the
database the set of loci containing mappable markers recorded by
markers.pl. It then maps haplotypes: if the first parent has haplotypes
GA and AC, and the second parent has the GA haplotype, Stacks
declares an ab/aa marker for this locus. The genotypes.pl program
maps GA to a, and AC to b in the parents and checks progeny to
see which haplotypes each contains, recording the genotypes (either
ab or aa, in this case). Finally, genotypes.pl formats genotypes for use
with the mapping program and outputs a properly formatted file.
Users can specify the minimum number of matching progeny re-
quired for locus export.

Automated corrections: Users can tell the genotypes.pl program to
perform automated corrections for certain errors, including checking
homozygous tags in the progeny to ensure that a SNP is not present. As
described in Appendix 1, if the SNP model cannot identify a site as
heterozygous or homozygous, the site is tentatively labeled a homozygote
to facilitate matching to the Catalog in sstacks. If a second allele iden-
tified in the Catalog (i.e., in the parents) is present in a progeny indivi-
dual at a low frequency (less than 10% of reads in the stack),
genotypes.pl corrects the genotype. Likewise, genotypes.pl removes
a homozygous genotype call for a particular individual if the locus

contains fewer than five reads supporting the genotype. Users can
adjust these thresholds.

Iterative corrections: The genotypes.pl program can optionally
output a file formatted for loading into the database. The web inter-
face allows users to manually correct genotypes. For example, a stack
for Locus 1 in one of the progeny (Figure 1E) might have just one A
allele but 19 C alleles. Stacks would call the genotype as homozygous
C, not being able to distinguish the single A from a sequencing error.
But if a homozygous C call results in a double cross-over involving
this single locus, the genotype is more likely to be heterozygous C/A
with the A allele undersequenced. Users can make this correction
through the web interface, and the corrected genotype will be included
on the next execution of genotypes.pl.

Utilizing a reference genome
Stacks can identify loci not only de novo as described above but also
using a reference genome. The two processes differ: instead of building
stacks and loci from similar sequence reads, Stacks first aligns se-
quence reads to the reference genome using Bowtie (Langmead
et al. 2009). And instead of invoking ustacks, we use pstacks (pop-
ulation stacks), which reads either Bowtie or SAM (Li et al. 2009) files
and builds stacks based on alignment positions. SNP calling proceeds
as before, and parameters exist for both cstacks and sstacks to
build Catalog loci and to match against those loci, respectively, based
on reference genome alignment positions instead of sequence dis-
tance. The business logic of this pipeline is embodied in the ref_
map.pl program, which executes each stage and loads the resulting
data into the database. Because pstacks and ustacks output the

Figure 3 Stacks simulation results. The stickleback reference genome was digested in silico by SbfI, and 60 bp reads were made from each
direction from the 22,774 cut sites at several different sequencing depths with several different error rates. The left panel shows the number of (A)
loci, (B) stacks, and (C) SNPs observed in the Stacks output. Loci that Stacks assembled incorrectly are displayed in a dark color, whereas loci
containing repetitive sequences are shown in a crosshatch pattern. A comparison of the number of loci present in the dataset (A) vs. the number of
stacks reconstructed (B) showed that ustacks collapsed repetitive loci but correctly reconstructed nearly all other loci at low and moderate error
rates or at high coverage. The right panel shows the number of reads with a certain number of sequencing errors that were incorporated into
correct stacks, incorrect stacks, and unused reads for 20· coverage and error rates of (D) 0.5%, (E) 1%, and (F) 3%. As errors accumulated, Stacks
excluded more reads, lowering the overall depth, whereas some reads accumulated enough errors to be incorporated into stacks that appeared
to be correctly assembled but, in fact, joined stacks representing loci from which they did not originate (indicated by reads with more errors than
allowed by the k-mer matching algorithm, four errors in the simulation).
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same file formats, the web interface displays them as in a genetic
map.

Generating paired-end mini-contigs and adding other
sequence sets
Mini-contigs from Rad-seq paired-end reads can be assembled and
added to Stacks, thereby providing several hundred additional geno-
mic nucleotides downstream of each marker that increase hits to
expressed sequence tags libraries and thus connect markers to protein
coding genes in other organisms (Amores et al. 2011; Etter et al.
2011). The sort_read_pairs.pl program collates paired-end reads asso-
ciated with each stack and outputs a FASTA file for each locus in the
catalog. Users can execute a program such as Velvet (Zerbino and
Birney 2008), which assembles reads in each FASTA file, to form
contigs that can then be loaded into the Stacks MySQL database using
the Stacks load_sequences.pl program.

The load_sequences.pl program assumes that the sequence de-
finition line, which is preceded by a “greater than sign” (.) for each
sequence in a FASTA file, is a Catalog locus ID, and will store that
sequence in the MySQL database linked to the Catalog locus. There-
fore, in addition to mini-contigs, if ESTs are available or were con-
structed de novo using RNA-seq (Mortazavi et al. 2008), they can
also be loaded into the database after they are matched to catalog
loci using a program such as Bowtie or BLAST (Altschul et al.
1997). Any sequence data loaded into the MySQL database can
later be exported in association with their markers using export_
catalog.pl.

In summary, the Stacks importing and exporting capabilities can
associate Stacks markers with additional sequences, including mini-
contigs and ESTs. These sequence sets can associate mappable loci in

protein coding genes to orthologs in other species by BLAST searches,
or to genomic contigs in an emerging reference genome.

Web-based interface
Stacks provides a web-based interface for viewing, annotating and cor-
recting loci in a population (Figure 2). The web interface displays hap-
lotypes present in every individual (Figure 2A) and clicking on a
haplotype returns the appropriate stack (Figure 2B). The web interface,
coupled with the MySQL database backend, provides extensive filtering
capabilities, which facilitate the separation of useful data from background
error, and it can export observed haplotypes as a Microsoft Excel docu-
ment. This modular design allows Stacks, the database, and the web-based
user interface to be located on the same or remote servers.

Simulation results
To test the ability of ustacks to identify loci, we simulated the RAD-
seq process from the well-assembled genome sequence of threespine
stickleback. We generated data at a per-allele mean sequencing depth
of 10·, 20·, and 40·, and we varied the sequencing error rate from 0.5
to 3%. In Figure 3, Reference Loci (Figure 3A) represents loci present
in the stickleback reference genome (Ensembl version 59) after the
RAD-seq simulation, whereas Observed Stacks (Figure 3B) represents
data discovered by Stacks. Results showed that, at low and moderate
error rates, ustacks correctly reconstructed nearly all (86%) known loci
(Figure 3A, B). A comparison of Reference Loci and Observed Stacks,
however (Figure 3A, B), shows that ustacks collapsed repetitive
sequences. Apart from repetitive sequences, less than 1% of stacks
assembled incorrectly. At the highest error rate (3%) and lowest cov-
erage (10·), about 51% of the known loci disappeared from the
results, but at 20· coverage, Stacks identified most loci (81% correctly

Figure 4 Stacks depth of cov-
erage distribution. (A) Correctly
reconstructed stacks have
a depth of coverage equal to
twice the mean sequencing
coverage because the simula-
tion assumes diploid individu-
als. With no polymorphism or
error (gray line), the depth of
coverage distribution nearly
matched the known simulation
distribution (dotted red line),
with the exception of repetitive
loci, which created the long tail
of the distribution to the right,
which was truncated at 200·
but extends to 17,000·. After
adding SNPs, ustacks failed to
reconstruct a small number of
loci (green arrow) as shown by
the increase in stacks with
a depth of coverage equal to
the sequencing mean depth.
(B–C) With the addition of se-
quencing error and increasing
mean sequencing depth, most
stacks were still properly recon-
structed. Results showed a re-
peating pattern of improperly
reconstructed stacks occurring

at multiples of the mean sequencing depth corresponding to the number of loci improperly merged together. The increasing error rate caused
a general loss of depth in the stacks (green vs. violet lines).
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assembled), and at 40· coverage, the error rate had little effect on the
number of identified loci (86% correctly assembled, Figure 3A, B).
Loci disappeared from the dataset likely due to low depth of coverage,
which occurs by chance, as well as reads confounded by error.

The simulation further showed that ustacks robustly identified
SNPs, except at a high error rate and low depth of coverage, or when
confounded by repetitive sequences (Figure 3C). These data show that
excess frugality or oversequencing are both wasteful. At the highest
error rate and under the parameters of this simulation, moving from
a per-allele depth of 10· to 20· gains 14,000 additional loci, whereas
moving from 20· to 40·, which also doubles sequencing cost, nets
only an additional 2400 loci.

To further study locus drop out and error rates, we examined the
effect of error rate on the distribution of errors per read. Because our
simulation allowed tracking the origin of each read, we could deduce
that, at the lowest error rate, reads that ended up in either correct
stacks or in incorrect stacks contained no more errors than are allowed
by the k-mer matching algorithm (four errors, in the worst case)
(Figure 3D). In contrast, reads that could not be assigned to a stack
(unused reads) tended to have more errors even at the lowest error rate
(Figure 3D). At higher error rates, the number of unused reads in-
creased greatly, from approximately 6000 at 0.5% to about 200,000 at
3%, thus decreasing stack depth (Figure 3E, F). Reads with more errors
than allowed by the matching algorithm (again, four errors) accumu-
lated in all three categories of reads at a 3% error rate (Figure 3F). The
accumulation of error-riddled reads in correctly assembled stacks indi-
cates that some reads suffered enough error to make them more
similar to a different locus than to their original, known locus.
These results demonstrate that raw sequence quality has a strong
effect on the ability of Stacks to successfully reconstruct loci.

Simulation data revealed the interacting effects of SNPs, sequenc-
ing depth, and error rate on stack quality. First, consider the effect of
introducing SNPs into simulated reads. The known distribution of
stacks with a particular sequencing depth (Figure 4A, dotted red line)
showed a peak at 40·, twice the average sequencing depth, because

a diploid has two alleles at each locus. Without the introduction of
SNPs or error, ustacks produced a rather erratic distribution of stack
depth (Figure 4A, gray line) with peaks at 80· and 120· due to the
erroneous collapsing of two or three loci known to be different be-
cause of their known origin in the stickleback genome. Furthermore,
ustacks collapsed over 6000 repetitive SbfI RAD loci in the stickleback
genome into a smaller number of loci with very high depths of cov-
erage, as indicated by the long right tail of the distribution that
stretches far beyond the truncated display in the figure. The introduc-
tion of SNPs into the simulated reads at a rate of 0.5% caused a shoul-
der to appear on the distribution at 20·, half the depth of the main
peak (Figure 4A, green line). These erroneous stacks of approximately
20· depth appeared because ustacks failed to find and join the alter-
native alleles for these stacks.

To explore the effects of error rate on locus quality, we studied, at
three levels of mean coverage, the effects of a typical low error rate of
0.5% and an unusually high error rate of 3.0% (Figure 4B, C). At 10·
mean coverage and 0.5% error, the distribution of correctly formed
loci matched closely that of the true distribution, differing only by
having somewhat fewer loci (a 14% reduction) than actually exist
(Figure 4B). This decrease came from two types of incorrectly joined
stacks: some incorrect stacks occupied a peak at 10·, representing
single stacks for which ustacks could not identify their true alternative
alleles due to errors, and other incorrect stacks fell in a peak at 40·,
representing cases in which ustacks inappropriately joined four stacks
coming from two independent diploid loci. And still other stacks in
the long tail represented the fusing of repetitive loci. An error rate six
times higher (3%) reduced the number of correctly joined stacks to
49% of the true number and resulted in the loss of the peak at 10·
found with the lower error rate. We conclude that high error rates
cause inappropriate joining of stacks more frequently than incorrect
failure to fuse stacks. With the introduction of errors at sequencing
depths of 20· and higher, the distribution of correctly joined stacks
shifted slightly to the left due to the accumulation of unused reads
(Figure 4C, D, green vs. purple lines). In sum, these simulations
demonstrate remarkable fidelity of locus identification, even in the
face of mounting errors, when the sequencing depth is between
20· and 40·.

A zebrafish genetic map
If Stacks works well, it should reconstruct a known genome map. To
test this prediction, we constructed for Danio rerio a genetic map
(RADmap) by using RAD-seq and Stacks to re-genotype a previously
published doubled haploid mapping panel (HSmap, http://zfin.org/
cgi-bin/webdriver?MIval=aa-crossview.apg&OID=ZDB-REFCROSS-
000320-1) that consists of 42 progeny (Kelly et al. 2000; Woods et al.
2005). Stacks reconstructed the 25 zebrafish linkage groups (Figure
S2), each with a length nearly identical to the original (Figure 5,
3186 cM in the HSmap vs. 3160 cM in the RADmap). With 7861
markers, our RADmap has nearly twice as many markers as the
original HSmap (4073 markers), but it required less than 1% of
the cost and took less than 1% of the time to genotype and construct.
The RADmap and HSmap had nearly identical marker order (Figure
S3); differences could represent errors in either map.

A comparison of the zebrafish RADmap to the sequenced
reference genome showed alignment of 5787 RADmap markers and
revealed that marker order for the RADmap and the physical
assembly generally agreed (Figure 6). An additional 157 mapped
RADmap markers aligned to genomic scaffolds that are currently
unordered in the Zv9 reference genome, thus positioning these errant
contigs into the reference genome.

Figure 5 Danio rerio RAD-tag map compared to the doubled haploid
map. We constructed a RAD-seq genetic map of zebrafish (RADmap)
using DNA from 42 individuals of the doubled haploid mapping panel
(HSmap) that had been previously genotyped by microsatellites or
single strand conformation polymorphism (Kelly et al. 2000; Woods
et al. 2000; Woods et al. 2005). Stacks recovered the 25 zebrafish
linkage groups (Figure S2) with lengths nearly identical to published
values (3186 cM in the HSmap vs. 3160 cM in the RADmap). With
7861 markers, our RADmap had nearly twice as many markers as
appeared in the HSmap (4073 markers). The insert shows the scale
for marker density.
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A plot of the RADmap vs. the reference genome identified several
regions of low recombination rate per physical distance. One region in
LG20 showed recombination suppression in the RADmap over a re-
gion of about 10 Mb (Figure 6, inset) that could be due to a hetero-
zygous inversion in the mother of the HS mapping panel, who was
a heterozygote of the clonal C32 line and the highly inbred SJD strains
(Nechiporuk et al. 1999; Streisinger et al. 1986). This hypothesis,
generated by the extraordinarily high density of RAD markers, war-
rants further investigation. LG4, which is chromosome 3 in the phys-
ical genome (Phillips et al. 2006), has a mostly heterochromatic long
arm, whose repetitive elements would produce lumberjack stacks that
would be excluded from analysis. Markers off the diagonal of Figure 5
could be due to errors either in the RADmap, in the BLAST assign-
ment of RADmap markers to the physical genome, or in the physical
assembly. These results show that RAD-tag markers can recapitulate
a known genetic map at greater density and with less time and ex-
pense than methodologies currently in use.

DISCUSSION
Analyzing RAD-seq data with Stacks can recover hundreds to tens
of thousands of informative markers that describe the genetics of
a population. Stacks has been used to generate an ultradense genetic
map using the F1 offspring of wild-caught spotted gar (Amores et al.

2011), to examine the phylogeographic distribution of the mosquito,
Wyeomyia smithii (Emerson et al. 2010), and to generate informative
SNPs in trout populations (Hohenlohe et al. 2011). The zebrafish map
constructed de novo here and compared with a well-assembled se-
quenced genome demonstrates the rapid nature of this approach that
took a few weeks of part-time effort, whereas a previous map using the
same DNAs required several years to construct, cost 100 times as
much, and had half the number of markers.

Having shown the biological precision of Stacks, we now discuss
how to increase its informative value by iteratively improving data and
associating loci to additional sequence data. Appendix 2 presents
methods to optimize Stacks, including alternative strategies to build
the Catalog and to adjust important Stacks parameters.

Stacks reveals loci en mass

Not all RAD-seq loci appear in all individuals due to poly-
morphisms in restriction enzyme cut sites, stochastic events related
to sequencing (as our simulations showed), PCR errors, or se-
quencing errors. Loci that appear in a large number of individuals
in a population or in a large number of map cross progeny are the
most reliable. Once Stacks has generated a set of markers, it is most
effective to select markers supported in as many progeny as pos-
sible by using the set of filters provided in the web interface (Figure

Figure 6 RADmap marker or-
der is consistent with the se-
quenced zebrafish genome. A
specific region on LG20 with no
recombination in the RADmap
spanned almost 10 Mb in the
physical genome (inset). This re-
combination suppression could
be due to a heterozygous in-
version present in the genome
of the mother of the gynoge-
netic HS mapping panel.
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2) or by specifying a minimum number of progeny when exporting
genotypes.

Iterative corrections
One of the key attributes of Stacks is its convenient web interface,
which supports manual corrections. Iterative corrections can make
significant improvements in a genetic map based on the principle that
double recombinants in a short genetic distance are unlikely events.
Manual examination of markers that expand the map can identify,
correct, or remove troublesome genotypes, followed by re-exporting
data and reconstructing the map. Reiteration can provide a genetic
map with strong statistical support on all linkage groups.

Stacks and genome duplication
Genome duplication events, like those that occurred in the stems of
vertebrate, teleost, salmonid, and flowering plant lineages (Allendorf
and Danzmann 1997; Amores et al. 1998; Dehal and Boore 2005;
Koop et al. 2008; Jiao et al. 2011), result in paralogs that are initially
identical but diverge over time. In some cases, Stacks might errone-
ously confuse paralogs that have nearly identical sequences with alleles
of the same locus. Fortunately, Stacks can detect “overmerging” of
paralogous stacks because all individuals homozygous for a specific
sequence at one paralog and homozygous for a slightly different se-
quence in the other paralog would appear to be heterozygotes for the
relevant SNP. In contrast, a meiotic mapping population that is seg-
regating a SNP at one locus or a population in Hardy-Weinberg
equilibrium would have, on average, only about half of the individuals
being heterozygotes. In addition, a diploid individual will never have
more than two alleles of a single locus, so if individuals are discovered
with three or more alleles, paralogs are likely to blame. Stacks can
detect markers in which observed heterozygosity is significantly dif-
ferent than expected and flag them. The problem of confusing paral-
ogs with allelic variants is evolutionarily transitory. Identical stacks (as
might be found for paralogs in recent tetraploids) are uninformative
and don’t cause a problem; furthermore, a few neutral mutations are
sufficient for Stacks to identify paralogous loci, particularly if the user
sets the within-distance parameter to a small value. In a recent study
of trout populations, Stacks flagged loci that differed from Hardy-
Weinberg expectations, thereby successfully removing the effects of
the recent (25–100 million years ago) salmonid genome duplication
(Hohenlohe et al. 2011).

The stringency of applied filters should depend on a number of
factors that reflect both the biology of the species (e.g., time since
duplication) and the experimental goals (e.g., trade-off between
marker number and marker reliability). In some cases, however,
the indiscriminate filtering of loci that do not appear to meet Hardy-
Weinberg expectations can lead to erroneous conclusions. For ex-
ample, in a recent moss linkage map, 45% of the loci exhibited
segregation distortion, likely due to lethal interactions between dis-
tant loci (Mcdaniel et al. 2007). Thus, while Stacks can flag markers
that do not fit expectations, careful interpretation is required to
understand the biology of the species.

Increasing the informative value of Stacks
Given the high marker density of a RAD-seq genetic map and the fact
that those markers consist of genomic sequence, BLAST searches
can associate markers or mini-contigs to ESTs, such as those gen-
erated by RNA-seq, or to orthologous genes in other species (Amores
et al. 2011). These features make comparative genomics a natural
extension of a Stacks analysis. The Stacks database contains several
tables supporting the importation of paired-end mini-contigs or
RNA-seq-assembled ESTs. A table also exists to store BLAST hits

from markers, mini-contigs, or ESTs, and the web interface displays
these data. Combined with programs in Stacks that import and export
these sequences from the database, it becomes straightforward to
perform conserved synteny analyses on genetic maps (see Amores
et al. 2011). Mini-contigs can be exported to help design PCR primers
for marker-assisted selection or to isolate genomic clones for specific
markers in the genetic map. In addition, Stacks facilitates the align-
ment of genomic contigs from an emerging, often highly fragmented,
reference genome assembly to the genetic map, thereby creating link-
age group–based scaffolds from the physical contigs.

Nearly a century after the first genetic maps (Sturtevant 1913),
Stacks, coupled with massively parallel DNA sequencing, makes the
genetic map relevant again. Because Stacks and RAD-seq rapidly and
inexpensively provide unprecedented numbers of genetic markers,
fragmented genome assemblies can be ordered, and variation existing
in single individuals taken directly from the wild can provide genetic
maps with genome-wide comparative information. In addition, Stacks
makes genome-wide association studies (GWAS) more tractable in
nonmodel species because the enormous linkage map provides
a framework for the analysis of population genomic data. Stacks is
available for download, along with a set of example data, tutorials, and
other documentation at http://creskolab.uoregon.edu/stacks/.
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APPENDIX 1

ALGORITHMIC DETAILS

The deleveraging algorithm
Given a connected graph of unique stacks, the deleveraging algorithm contained in ustacks determines which subset of stacks is most likely to
represent a locus. This heuristic program assumes that stacks originating from the same locus have approximately the same depth of coverage; for
example, a true stack should have greater depth of coverage than stacks resulting from sequencing errors but less depth than stacks derived from
repetitive elements. To achieve the goal of identifying the true components of the locus, the deleveraging algorithm first scales edges in the graph
(which reflect nucleotide distance) by the log of the difference in depth of coverage between nodes. Nodes with a small nucleotide distance and
relatively equal depths of coverage will be connected by an edge weighted with a very small distance in the graph, whereas nodes separated by
a large nucleotide distance and/or a large difference in depth of coverage will be connected by an edge weighted by a large distance. Stacks feeds
these scaled distances into a hierarchical clustering algorithm (de Hoon 2010) that arranges stacks in a tree according to distances that separate
stacks from one another. This resulting tree is split into two groups, one representing the most closely related nodes in the tree, and the other
containing the rest. For example, given a set of five stacks that have been grouped into a putative locus, where two stacks have coverage depth
similar to that of the mean and where the other three stacks are shallow due to sequencing errors, the deleveraging algorithm is successful if it can
separate the two real stacks from the stacks with sequencing errors. After the deleveraging algorithm executes, Stacks checks the maximum
distance between the nodes in both clusters, and if this distance is greater than the user-specified nucleotide distance (the within-individual
distance parameter), the lumberjack stack is blacklisted and excluded from use in the remainder of the pipeline; otherwise, the grouped loci
persist in the dataset.
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Maximum likelihood SNP model
At each nucleotide position in a locus, Stacks adapts the single-nucleotide, diploid genotyping method described by (Hohenlohe et al. 2010). This
approach considers the counts of each of the four possible nucleotides in a multinomial sampling and uses a likelihood ratio test to assess the
significance of the most likely genotype. The sequencing error rate is estimated implicitly by maximum likelihood at each position, and
a significance level of a = 0.05 is used (without correction for multiple testing) to assign a diploid genotype (homozygote or heterozygote) at each
position for each individual (Hohenlohe et al. 2010). If this likelihood ratio test is not significant, due either to low coverage or to read counts that
lie between expectations for a heterozygote and a homozygote with error, then the model considers the location to be a homozygote for the most
commonly observed nucleotide. This procedure avoids uncalled bases in the subsequent merging of stacks. The genotypes.pl program later
corrects these genotypes by using information across individuals in the dataset. Future versions of Stacks will allow prior distributions to be
placed on the sequencing error parameter and the significance level a to accommodate known attributes of the dataset, and it will dynamically
modify thresholds that determine when a particular genotype call is significant.

APPENDIX 2

IMPORTANT PARAMETERS; USAGE STRATEGIES

Catalog construction
The cstacks program, which builds the Catalog, can accept data from an arbitrary number of individuals. The Catalog was designed to contain all
possible loci that might appear in an analysis. The merging of each additional individual into the Catalog, however, brings with it a small number
of erroneous stacks. In the case of a genetic map, the choice of what to load into the Catalog is simple: the parents of the cross contain all possible
loci present in the progeny and thus together act as a natural limit to the number of loci that will be in their progeny; hence, the parents should
appear in the Catalog. In a population genomic investigation, however, loading individuals into the Catalog is likely to increase the number of
erroneous loci in the Catalog as a function of the number of individuals loaded. One strategy around this problem is to create a “superparent,”
a virtual individual created by combining reads from many individuals. The ustacks program builds stacks from the superparent normally, and
cstacks loads them into the Catalog. If the investigated individuals are members of different subpopulations (say, lake vs.marine fish or different
plant ecotypes), then a superparent could be built from each subpopulation with several superparents loaded into the Catalog. This approach
works well for correctly identifying loci with a moderate to high frequency of minor alleles in the population sample, which is likely to be
a primary application of Stacks. Note, however, that the multinomial sampling model in the genotyping algorithm applies strictly to single diploid
individuals, where alternative alleles in a single heterozygous individual are expected to appear in a stack in roughly equal frequencies. Rare alleles
in a population might be erroneously excluded by this approach because the program treats their SNPs as sequencing errors in the superparent.
In the future, we plan to eliminate stacks representing errors by comparing loci across a population and eliminating very low frequency
haplotypes at a particular locus, which may obviate the need to construct superparents.

Important parameter values
Users can specify three major parameters when running the Stacks pipeline de novo.

The stack-depth parameter controls the minimum number of identical reads required to form a stack. In our empirical work, we have had
success using a minimum depth of three, although this number should scale along with the number of raw reads available.

The second parameter, the within-individual distance parameter, is the maximum number of nucleotide mismatches allowed between stacks
before fusing two or more stacks into a locus. If this parameter is set too low, loci containing multiple SNPs per haplotype will not be recovered. If
it is set too high, Stacks will incorrectly combine distinct genetic loci that happen to be near each other in sequence space. The default value is two
nucleotides, but we have had success using a value of up to four. This parameter must be sensitive to the biology (for example, duplication
history) of the species.

The third parameter, called the between-individual distance parameter, is the number of mismatches allowed between loci in the Catalog. The
between-individual distance parameter allows Stacks to detect loci that are homozygous in individuals but polymorphic between individuals. By
default, Stacks sets catalog-mismatch to zero; increasing the catalog-mismatch limit can have the same potentially negative effects as increasing
the within-individual distance parameter. The most appropriate value for the between-individual distance parameter varies with the evolutionary
distance of the parents of the cross or of the members of the population being examined. In a standard F2 mapping cross, an F1 pseudo-testcross
[as in the gar map (Amores et al. 2011)], or the zebrafish doubled haploid cross, zero is appropriate for the between-individual distance
parameter. In contrast, with highly divergent populations, a higher value might be more appropriate because different populations might be
fixed for different alleles of the same locus. A reasonable approach is to set the between-individual distance parameter to the same value as the
within-individual distance parameter if one expects fixed alleles in the parents of a cross or in members of a population.
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